Crystal structure of the sodium–proton antiporter NhaA dimer and new mechanistic insights

نویسندگان

  • Chiara Lee
  • Shoko Yashiro
  • David L. Dotson
  • Povilas Uzdavinys
  • So Iwata
  • Mark S.P. Sansom
  • Christoph von Ballmoos
  • Oliver Beckstein
  • David Drew
  • Alexander D. Cameron
چکیده

Sodium-proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium-proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium-proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium-proton antiport in NhaA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NhaA crystal structure: functional-structural insights.

Na(+)/H(+) antiporters are integral membrane proteins that exchange Na(+) for H(+) across the cytoplasmic membrane and many intracellular membranes. They are essential for Na(+), pH and volume homeostasis, which are crucial processes for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt-resistance in plants. Many Na(+)/H(+) antiporters are tightly r...

متن کامل

Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae.

The application of systems biology tools holds promise for rational industrial microbial strain development. Here, we characterize a Zymomonas mobilis mutant (AcR) demonstrating sodium acetate tolerance that has potential importance in biofuel development. The genome changes associated with AcR are determined using microarray comparative genome sequencing (CGS) and 454-pyrosequencing. Sanger se...

متن کامل

Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1.

We have determined the structure of the archaeal sodium/proton antiporter NhaP1 at 7 Å resolution by electron crystallography of 2D crystals. NhaP1 is a dimer in the membrane, with 13 membrane-spanning α-helices per protomer, whereas the distantly related bacterial NhaA has 12. Dimer contacts in the two antiporters are very different, but the structure of a six-helix bundle at the tip of the pr...

متن کامل

Mechanism of pH-dependent activation of the sodium-proton antiporter NhaA

Escherichia coli NhaA is a prototype sodium-proton antiporter, which has been extensively characterized by X-ray crystallography, biochemical and biophysical experiments. However, the identities of proton carriers and details of pH-regulated mechanism remain controversial. Here we report constant pH molecular dynamics data, which reveal that NhaA activation involves a net charge switch of a pH ...

متن کامل

Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli.

The H+:Na+ exchange stoichiometry of NhaA, a sodium-proton antiporter coded by the nhaA gene of Escherichia coli, has been determined using purified NhaA protein reconstituted into sodium-loaded proteoliposomes. One approach involved measuring, in parallel experiments, the Na+ efflux and H+ influx from such proteoliposomes and calculating the stoichiometry from the ratio of these fluxes. A seco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2014